1 The vectors \mathbf{P} , \mathbf{Q} and \mathbf{R} are given by

$$P = 5i + 4j$$
, $Q = 3i - 5j$, $R = -8i + j$.

- (i) Find the vector $\mathbf{P} + \mathbf{Q} + \mathbf{R}$. [1]
- (ii) Interpret your answer to part (i) in the cases
 - (A) **P**, **Q** and **R** represent three forces acting on a particle, [1]
 - (B) **P**, **Q** and **R** represent three stages of a hiker's walk. [1]
- 2 The vectors \mathbf{P} , \mathbf{Q} and \mathbf{R} are given by

$$P = 5i + 4j$$
, $Q = 3i - 5j$, $R = -8i + j$.

- (i) Find the vector $\mathbf{P} + \mathbf{Q} + \mathbf{R}$. [1]
- (ii) Interpret your answer to part (i) in the cases
 - (A) **P**, **Q** and **R** represent three forces acting on a particle, [1]
 - (B) P, Q and R represent three stages of a hiker's walk. [1]
- 3 In this question the unit vectors \mathbf{i} and \mathbf{j} are pointing east and north respectively.
 - (i) Calculate the bearing of the vector $-4\mathbf{i} 6\mathbf{j}$. [2]

The vector $-4\mathbf{i} - 6\mathbf{j} + k(3\mathbf{i} - 2\mathbf{j})$ is in the direction $7\mathbf{i} - 9\mathbf{j}$.

(ii) Find k.

4 A small box has weight **W**N and is held in equilibrium by two strings with tensions \mathbf{T}_1 N and \mathbf{T}_2 N. This situation is shown in Fig. 2 which also shows the standard unit vectors **i** and **j** that are horizontal and vertically upwards, respectively.

Fig. 2

The tension \mathbf{T}_1 is $10\mathbf{i} + 24\mathbf{j}$.

(i) Calculate the magnitude of T_1 and the angle between T_1 and the vertical. [3]

The magnitude of the weight is w N.

(ii) Write down the vector \mathbf{W} in terms of w and \mathbf{j} . [1]

The tension \mathbf{T}_2 is $k\mathbf{i} + 10\mathbf{j}$, where k is a scalar.

(iii) Find the values of k and of w. [3]

- 5 A particle has a position vector \mathbf{r} , where $\mathbf{r} = 4\mathbf{i} 5\mathbf{j}$ and \mathbf{i} and \mathbf{j} are unit vectors in the directions east and north respectively.
 - (i) Sketch **r** on a diagram showing **i** and **j** and the origin O. [1]
 - (ii) Calculate the magnitude of **r** and its direction as a bearing. [4]
 - (iii) Write down the vector that has the same direction as **r** and three times its magnitude. [1]

- 6 Force \mathbf{F}_1 is $\begin{pmatrix} 6 \\ 13 \end{pmatrix}$ N and force \mathbf{F}_2 is $\begin{pmatrix} 3 \\ 5 \end{pmatrix}$, where $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$ are vectors east and north respectively.
 - (i) Calculate the magnitude of \mathbf{F}_1 , correct to three significant figures. [2]
 - (ii) Calculate the direction of the force $\mathbf{F}_1 \mathbf{F}_2$ as a bearing. [3]

Force \mathbf{F}_2 is the resultant of all the forces acting on an object of mass $5\,\mathrm{kg}$.

(iii) Calculate the acceleration of the object and the change in its velocity after 10 seconds. [3]